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Evolutionary High Level Synthesis with Predictive 
Models. 

Nidhin. A, D.S Harish Ram. 
 

Abstract— In modern day chip design, the pressure for time to market is increasing and recovery time for investment is decreasing. So 
design times have to be shortened. An Artificial Neural Network (ANN) based predictive model for power to speed-up the cost function 
evaluation during High Level Synthesis (HLS) is presented here. Genetic Algorithms (GA) have been used successfully to solve HLS 
problems. Our proposed predictive model can be easily integrated with this evolutionary framework.  The accuracy of this predictive model 
is tested with DFG benchmark circuits. 

Index Terms— Artificial Neural Network, Cost Function Evaluation, Design Space Exploration, Evolutionary Computation, High Level 
Synthesis, Power Estimation, Predictive Models.   

——————————      —————————— 

1 INTRODUCTION                                                                     
igh level synthesis (HLS) is the process of synthesizing  
behavioral specification of a digital circuit into a Register 

Transfer Level (RTL) description that realizes the behavior 
with respect to some design constraints.          
 

HLS mainly involves (i) scheduling, (ii) resource allo-
cation, (iii) binding and (iv) controller synthesis [1], [2]. The 
scheduling phase assigns each operation to one or more clock 
cycles (or control steps) for the execution. The resource alloca-
tion phase assigns the execution of the operations to hardware 
components. Then it is interconnected using connection ele-
ments. Binding is the actual mapping of operations to func-
tional units, data transfer to buses and variables to storage 
units [3], [4].  
  
 Design Space Exploration (DSE) is the process of ex-
ploring different design alternatives having various trade-offs 
and objectives such as power area and delay. It is computa-
tionally unfeasible to use an exhaustive exploration strategy. 
The size of the design space grows as the product of the cardi-
nalities of  the variation sets for  each objective[5][6]. Evalua-
tion of  a single configuration almost always requires the use 
of simulators or analytical models which are also complex. 
Another challenge is that the objectives being optimized are 
often conflicting. DSE flow can be schematically represented 
as in Fig. 1. The exploration phase uses the results of the eval-
uation phase to modify the system configuration parameters 
so as to optimize certain performance indices. The cyclic pro-
cess ends when a system configuration meets the design con-
straints. Pareto-optimal configurations for these indices are  

optimized and accumulated. These complex explorations are 
handled successfully by evolutionary algorithms (EAs).The 
drawback of this approach is the need to evaluate a huge 
number of design alternatives. The design process needs to be 
shortened to meet the time-to-market constraint. 

 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 A technique to speed up the cost function evaluation dur-

ing HLS by applying soft computing and machine intelligence 
techniques is presented in this paper. Power is an integral 
component in any multi objective problem in VLSI. Early es-
timation of power with good relative accuracy is a major chal-
lenge requiring expensive simulations and characterizations. 
Hence power is considered in this work. There are two ap-
proaches to reduce this evaluation time. (i) Reducing evalua-
tion time for a single iteration. (ii) Reducing number of true 
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evaluations [5]. Interpolation techniques are usually less time 
consuming and are applied to reduce the overall number of 
true evaluations [7].  

 This paper is organized as follows. Section 2 describes 
some works related to speed up the cost function evaluation 
during high level synthesis. In section 3, three parameters re-
lated to the power dissipation of a schedule is discussed. The 
proposed power prediction model is presented in section 4. 
`The accuracy tested with various benchmark circuits are dis-
cussed in section 5 and finally concluded. 

2 RELATED WORK 
In [7], a linear regression model is proposed for area and delay 
estimation of data paths which reduces the computational ef-
fort for cost function evaluation.  
 
 The time-consuming logic synthesis step is substitut-
ed with a model of area, based on the important features of the 
structural descriptions obtained by the high-level synthesis 
step. Two possible cost models for the area are considered. 
One linearly combines the number of functional units present 
in the design and their area and counts the memory elements. 
The other one is a linear regression that also takes into account 
interconnections.  
      
 In [7], the authors also report another approach for 
the same based on fitness inheritance scheme which on the 
other hand, seeks to reduce the number of evaluations. Fitness 
inheritance substitutes some steps of the synthesis by interpo-
lating the fitness of previously evaluated individuals. The fit-
ness of individuals used for this scheme can be evaluated by 
any approach. In this scheme total number of evaluations is 
reduced rather than reducing the time required for a single 
evaluation. Since interpolation techniques are less time con-
suming, it is used to save some of the time required for a com-
plete synthesis. Fitness inheritance depends only on the defini-
tion of the chromosome encoding and the fitness of previously 
evaluated individuals in the population. This technique is 
highly dependent on the chromosome and was found to be 
inadequate for modeling the power cost.   
 In [5] a Genetic Algorithm (GA) is used as exploration 
heuristic and a Fuzzy System (FS) as an evaluation tool. It is 
an intelligent GA approach which has the ability to avoid the 
simulation of configurations and to give them fitness values as 
per the fast estimation of the objectives. This system works as 
follows. When the GA evolves normally, the FS learns from 
simulations and it becomes expert and reliable. At this mo-
ment GA stops launching simulations and uses the FS to esti-
mate the objectives.  
 
  A fuzzy rule-based system is chosen as an estimator. 
The advantages of this system are it has cheap additional 
computational time requirements for the learning process. It is 
negligible when compared with simulation time. Another ad-
vantage of this system is that fuzzy rules can be easily inter-
preted by the designer. The proposed approach has been ap-
plied on a highly parameterized very long instruction word 
(VLIW) processor. The integration with fuzzy system saves 

great amount of time. However, the system depends heavily 
on the chromosome encoding used. 

3 POWER ESTIMATION 
In [8] metrics based on the compatibility graph of a sched-

ule have been proposed for estimating the power cost.  As the 
number of edges in the DFG increases the design space of the 
binding stage expands, increasing the probability of contain-
ing the absolute minimum power solution. The edge weights 
between nodes indicate the switching activity between nodes. 
Thus a CG with lesser average edge weight indicates a power 
aware schedule. These dependencies are encoded into the 
power cost function modelled by equations (1) and (2).  
 
• Metric m1 denotes the number of edges 
• Metric m2 considers the sum of the edges weights in 

the lowest k% of the value range for each node and 
computes the average of these sums over all nodes. 
Since the flow algorithm tends to select edges with 
smaller weights, m2 provides an indication for the 
quality of the input presented to the flow algorithm. 
Lower m2 values indicate a higher potential of yield-
ing a lower power binding solution. 

• Metric m3 is the generalization of metric m2. It 
 computes the average of all edge weights  contained  

in the DFG. i.e m2 is the value of m3 with k=100%. 
Metrics m2 and m3 should be  minimized for min-
imum power. These metrics can  be formulated as 
follows: 
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These metrics are also in adopted in our predictive model for 
power.  

4 PREDICTION MODEL FOR POWER 
GAs are successfully used to solve the HLS problems. 

Different schedules are encoded as chromosomes in GA [9]. 
This proposed predictive model can be integrated to this evo-
lutionary framework easily. 

 
 The block diagram for the prediction model for power 
dissipation is shown in Fig. 3. The chromosomes are given as 
the input to the predictive model. The power metrics are ex-
tracted from the chromosomes [8].These metrics are given as 
the input to the trained neural network. This network will 
predict the power for that schedule. The network is trained by 

∑
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pre-evaluated power for some chromosomes using Synopsys 
tools. The Artificial Neural Network (ANN) used for predict-
ing power is shown in Fig 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The ANN is trained using Levenberg - Marquardt (LM) al-
gorithm[11][12]. The  LM  algorithm  blends  the  steepest  de-
scent  method  and  the  Gauss–Newton algorithm. It inherits 
the speed advantage of the Gauss–Newton algorithm and the 
stability advantage of the steepest descent method. 

5 RESULTS AND DISCUSSIONS 
The accuracy of the developed model is verified using DFG 

benchmark circuits. The results on the HAL,IIR and DCT 
benchmarks are shown respectively in Tables 1,2 and 3.  

 
 For the DCT benchmark, two sets of power models 

with training sets of 30 chromosomes and 45 chromosome 
each are developed. It is observed that as number of chromo-
somes in training phase increases the accuracy also increases.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The relative accuracy and minimization of computational ef-

fort is achieved. 
 
For IIR and HAL which are smaller bench marks the mod-

els achieved 100% accuracy with the training set of 45 chromo-
somes. In the case of DCT average error is 3.75% for the train-
ing set of 30 chromosomes. However it is reduced to 2.06% for 
the training set of 45 chromosomes.   
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Fig. 3 Block diagram of power prediction model.  

Chrom
osome No. 

Predicted power 
(in mW) 

Actual 
power   (in 

mW) 
1  0.10555  0.10555  
2  0.14189  0.14180  
3  0.14189  0.14189  
4  0.10555  0.10555  
5  0.064723 0.06472 
6  0.14188 0.14189  
7  0.098082  0.09808 
8  0.10555  0.10555  
9  0.14189  0.14189  
10  0.10555  0.10555  
11  0.14189  0.14189  
12  0.10555  0.10555  
13  0.14189  0.14189  
14  0.14189  0.14189  
15  0.14189  0.14189  
16  0.14189  0.14189  
17  0.098082 0.09808 
18  0.14189  0.14189  
19  0.064723 0.06472 
20  0.064723  0.06472 

 

Table. 1 Predicted power for HAL benchmark 
 

 

Fig. 4 Artificial Neural Network 

Table. 2 Predicted power for IIR benchmark 
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6 CONCLUSION 

A predictive model for power estimation during 
evolutionary high level synthesis by applying soft computing 
techniques is developed. The accuracy of the proposed model is 
tested with different DFG benchmark circuits. This model can be 
easily integrated into an evolutionary framework to solve HLS 
problems. Since the number of true evaluations is reduced with 
this model, it leads to reduction in design time. 
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Chrom. 
No. 

Predicted Pow-
er(in mW) 

Actual Power        
(in mW) 

1 0.1041 0.1041 

2 0.0982 0.0982 

3 0.1065 0.1065 

4 0.0712 0.0712 

5 0.0651 0.0651 

6 0.1102 0.1102 

7 0.0821 0.0821 

8 0.0965 0.0965 

9 0.0788 0.0788 

10 0.1205 0.1205 

 

Table. 3 Predicted power for DCT benchmark 
 

  
 
No 

Actual 
Power 
(in 
mW) 

Training with 
30 

Training with 
45 

Pre-
dicted 
Pow-
er(in 
mW) 

Error Pre-
dicted 
Pow-
er(in 
mW) 

Error 

1 0.1389 0.1310 5.5% 0.1372 1.1% 

2 0.1369 0.1312 4.1% 0.1425 4.0% 

3 0.1354 0.13205 2.4% 0.1375 1.4% 

4 0.1384 0.13556 2.0% 0.1402 1.3% 

5 0.1319 0.12972 1.6% 0.1341 1.6% 

6 0.1329 0.13954 4.9% 0.13514 1.6% 

7 0.1438 0.1376 4.3% 0.1416 1.5% 

8 0.1408 0.1317 6.4% 0.1364 3.2% 

9 0.1334 0.1369 2.6% 0.1312 1.4% 

10 0.1339 0.1391 3.8% 0.1386 3.5% 
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